首页    期刊浏览 2025年02月17日 星期一
登录注册

文章基本信息

  • 标题:Extension Preservation in the Finite and Prefix Classes of First Order Logic
  • 本地全文:下载
  • 作者:Anuj Dawar ; Abhisekh Sankaran
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:183
  • 页码:18:1-18:13
  • DOI:10.4230/LIPIcs.CSL.2021.18
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:It is well known that the classic ŁoÅ>-Tarski preservation theorem fails in the finite: there are first-order definable classes of finite structures closed under extensions which are not definable (in the finite) in the existential fragment of first-order logic. We strengthen this by constructing for every n, first-order definable classes of finite structures closed under extensions which are not definable with n quantifier alternations. The classes we construct are definable in the extension of Datalog with negation and indeed in the existential fragment of transitive-closure logic. This answers negatively an open question posed by Rosen and Weinstein.
  • 关键词:finite model theory; preservation theorems; extension closed; composition; Datalog; Ehrenfeucht-Fraisse games
国家哲学社会科学文献中心版权所有