首页    期刊浏览 2025年02月23日 星期日
登录注册

文章基本信息

  • 标题:Domain Theory in Constructive and Predicative Univalent Foundations
  • 本地全文:下载
  • 作者:Tom de Jong ; Escardó, Martín Hötzel
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:183
  • 页码:28:1-28:18
  • DOI:10.4230/LIPIcs.CSL.2021.28
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:We develop domain theory in constructive univalent foundations without Voevodsky’s resizing axioms. In previous work in this direction, we constructed the Scott model of PCF and proved its computational adequacy, based on directed complete posets (dcpos). Here we further consider algebraic and continuous dcpos, and construct Scott’s D_â^Z model of the untyped λ-calculus. A common approach to deal with size issues in a predicative foundation is to work with information systems or abstract bases or formal topologies rather than dcpos, and approximable relations rather than Scott continuous functions. Here we instead accept that dcpos may be large and work with type universes to account for this. For instance, in the Scott model of PCF, the dcpos have carriers in the second universe Uâ, and suprema of directed families with indexing type in the first universe Uâ,€. Seeing a poset as a category in the usual way, we can say that these dcpos are large, but locally small, and have small filtered colimits. In the case of algebraic dcpos, in order to deal with size issues, we proceed mimicking the definition of accessible category. With such a definition, our construction of Scott’s D_â^Z again gives a large, locally small, algebraic dcpo with small directed suprema.
  • 关键词:domain theory; constructivity; predicativity; univalent foundations
国家哲学社会科学文献中心版权所有