首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Penalized empirical likelihood for high-dimensional generalized linear models
  • 本地全文:下载
  • 作者:Chen, Xia ; Mao, Liyue
  • 期刊名称:Statistics and Its Interface
  • 印刷版ISSN:1938-7989
  • 电子版ISSN:1938-7997
  • 出版年度:2021
  • 卷号:14
  • 期号:2
  • 页码:83-94
  • DOI:10.4310/20-SII615
  • 出版社:International Press
  • 摘要:We develop penalized empirical likelihood for parameter estimation and variable selection in high-dimensional generalized linear models. By using adaptive lasso penalty function, we show that the proposed estimator has the oracle property. Also, we consider the problem of testing hypothesis, and show that the nonparametric profiled empirical likelihood ratio statistic has asymptotic chi-square distribution. Some simulations and an application are given to illustrate the performance of the proposed method.
  • 关键词:penalized empirical likelihood; high-dimensional data; variable selection; generalized linear model
国家哲学社会科学文献中心版权所有