摘要:The main purpose of image enhancement technology is to improve the quality of the image to better assist those activities of daily life that are widely dependent on it like healthcare, industries, education, and surveillance. Due to the influence of complex environments, there are risks of insufficient detail and low contrast in some images. Existing enhancement algorithms are prone to overexposure and improper detail processing. This paper attempts to improve the treatment effect of Phase Stretch Transform (PST) on the information of low and medium frequencies. For this purpose, an image enhancement algorithm on the basis of fractional-order PST and relative total variation (FOPSTRTV) is developed to address the task. In this algorithm, the noise in the original image is removed by low-pass filtering, the edges of images are extracted by fractional-order PST, and then the images are fused with extracted edges through RTV. Finally, extensive experiments were used to verify the effect of the proposed algorithm with different datasets.