首页    期刊浏览 2024年11月10日 星期日
登录注册

文章基本信息

  • 标题:Building and precision assessment of regression models for determining of cereals’ and legumes’ crop yield based on Earth remote sensing data and climatic characteristics
  • 其他标题:ПОСТРОЕНИЕ И ОЦЕНКА ТОЧНОСТИ РЕГРЕССИОННЫХ МОДЕЛЕЙ ДЛЯ ОПРЕДЕЛЕНИЯ УРОЖАЙНОСТИ ЗЕРНОВЫХ И ЗЕРНОБОБОВЫХ КУЛЬТУР НА ОСНОВЕ ДАННЫХ ДИСТАНЦИОННОГО ЗОНДИРОВАНИЯ ЗЕМЛИ И КЛИМАТИЧЕСКИХ ХАРАКТЕРИСТИК
  • 本地全文:下载
  • 作者:Alexey S. Stepanov ; Tatiana A. Aseeva ; Konstantin N. Dubrovin
  • 期刊名称:InterCarto. InterGIS
  • 印刷版ISSN:2414-9179
  • 电子版ISSN:2414-9209
  • 出版年度:2020
  • 卷号:26
  • 期号:3
  • DOI:10.35595/2414-9179-2020-3-26-159-169
  • 语种:English
  • 出版社:Laboratory of Complex Mapping, Faculty of Geography, MSU
  • 摘要:Crop yields are strictly dependent from natural and climatic conditions of the growing region, in addition specific weather conditions in the southern part of the Far East necessitates the analysis of a large number of factors when building a predictive regression model. The article presents regression models for assessing the average productivity of the main crops in Chernigovsky district of Primorsky region: soybean, spring wheat, barley and oat. Between 2012 and 2018 the sown area of these crops ranged from 78 to 86 % of the total sown area in the Chernigovsky district. We used the indicators obtained from Earth remote sensing data (the maximum weekly NDVI per year, calculated from the mask of arable land in the Chernigovsky district) and meteorological characteristics (from 2008 to 2018): hydrothermal Selyaninov coefficient, the duration of the growing season, temperature and humidity of the upper soil layer, photosynthetically active radiation and the Budyko radiation index. Climatic characteristics of arable land, representing reanalysis data and combining ground based and remote observations, were obtained using the Vega–Science web–service. Also, we used data about sown area and gross crop in the Chernigovsky region from 2008 to 2018. It was found that average annual oat yield has the biggest coefficient of variation (31.5 %). The corresponding indicator for the remaining crops is in range from 16 to 18 %. The accuracy analysis of the obtained models showed that the average error of the model in period from 2008 to 2017 was 4.1 % for barley, 5.1 % for oat and spring wheat, and 5.4 % for soybean.
  • 其他摘要:Урожайность сельскохозяйственных культур находится в строгой зависимости от природно-климатических условий региона выращивания, при этом специфичность погодных условий южной части Дальнего Востока обусловливает необходимость анализа большого числа факторо
  • 关键词:crops;yield;climatic characteristics;regression model;remote sensing
  • 其他关键词:сельскохозяйственные культуры;урожайность;климатические характеристики;регрессионная модель;дистанционное зондирование
国家哲学社会科学文献中心版权所有