首页    期刊浏览 2024年11月14日 星期四
登录注册

文章基本信息

  • 标题:Algorithms for Maximum Entropy Parameter Estimation
  • 本地全文:下载
  • 作者:Nidelea Marinela
  • 期刊名称:Ovidius University Annals: Economic Sciences Series
  • 电子版ISSN:2393-3127
  • 出版年度:2011
  • 卷号:11
  • 期号:2
  • 语种:English
  • 出版社:Ovidius University Press
  • 摘要:In this paper,we consider a number of algorithms for estimating the parameters of ME models,including iterative scaling,gradient ascent,conjugate gradient,and variable metric methods. Surprisingly,the standardly used iterative scaling algorithms perform quite poorly in comparison to the others,and for all of the test problems,a limitedmemory variable metric algorithm outperformed the other choices. Maximum entropy (ME) models,variously known as log-linear,Gibbs,exponential,and multinomial logit models,provide a general purpose machine learning technique for classification and prediction which has been successfully applied to fields as diverse as computer vision and econometrics.
  • 关键词:GIS;entropy;ME models;probability;heuristic
国家哲学社会科学文献中心版权所有