首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:DETECTION OF MEASUREMENT POINTS IN A 3D BODY POSITIONING SYSTEM BY MEANS OF ARTIFICIAL INTELLIGENCE
  • 其他标题:LOKALIZACJA PUNKTÓW POMIAROWYCH W SYSTEMIE DO TRÓJWYMIAROWEGO POZYCJONOWANIA CIAŁA WYBRANYMI METODAMI SZTUCZNEJ INTELIGENCJI
  • 本地全文:下载
  • 作者:Anna Czechowicz ; Regina Tokarczyk
  • 期刊名称:Archiwum Fotogrametrii, Kartografii i Teledetekcji
  • 印刷版ISSN:2083-2214
  • 出版年度:2009
  • 卷号:20
  • 语种:English
  • 出版社:Main Board of Association of Polish Surveyors
  • 摘要:A digital photogrammetric system for making measurements of the human body for the purpose of studying faulty posture is designed to determine the three-dimensional location of selected points in the human body. It requires the measurement of three groups of points on digital images,points referred to in this paper’s title as measurement points,i.e. control points,markers indicated on the patient’s body and pupils of the eyes. Control points are black and white signals permitting the correct orientation in space of a model created from the images. The markers are balls of polystyrene foam of 4-5 mm diameter,placed on the body,which indicate selected elements of the human skeleton. This paper describes the utilisation of neural networks to locate control points and markers. The aim of the networks is to classify consecutive fragments of an image as containing control points,containing markers or not containing any of these features. The research covered evaluation of the possibility of conducting this classification using Multi Layer Perceptron Networks with back propagation of errors as well as with Radial Basis Function Networks. The usefulness of a representation based on information about the distribution of gradient value and direction for the purpose of the detection of measurement points has been verified. This representation comes from earlier research on the selection of subimages for the purpose of matching the aerial pictures.
  • 其他摘要:Fotogrametryczny system cyfrowy do pomiaru ciała ludzkiego dla celów badago z nich. W ramach badań sprawdzono możliwość przeprowadzenia zdefiniowanej powyżej klasyfikacji sieciami o architekturze wielowarstwowego perceptronu (ang. Multi Layer Perceptron –
  • 关键词:Photogrammetry;Body Positioning;Neural Networks;Multi Layer Perceptron; Error Back-Propagation;Radial Basis Function Networks
  • 其他关键词:fotogrametria;pozycjonowanie ciała;sieci neuronowe;perceptron wielowarstwowy;wsteczna propagacja błędów;sieci z radialnymi funkcjami bazowymi
国家哲学社会科学文献中心版权所有