首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:How far does logistic dampening influence the global solvability of a high-dimensional chemotaxis system?
  • 本地全文:下载
  • 作者:Ke Jiang ; Yongjie Han
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13661-020-01478-2
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper deals with the homogeneous Neumann boundary value problem for chemotaxis system $$\begin{aligned} \textstyle\begin{cases} u_{t} = \Delta u - \nabla \cdot (u\nabla v) \kappa u-\mu u^{\alpha }, & x\in \Omega, t>0, \\ v_{t} = \Delta v - uv, & x\in \Omega, t>0, \end{cases}\displaystyle \end{aligned}$$ in a smooth bounded domain $\Omega \subset \mathbb{R}^{N}(N\geq 2)$ , where $\alpha >1$ and $\kappa \in \mathbb{R},\mu >0$ for suitably regular positive initial data. When $\alpha \ge 2$ , it has been proved in the existing literature that, for any $\mu >0$ , there exists a weak solution to this system. We shall concentrate on the weaker degradation case: $\alpha \frac{4}{3}$ . It is interesting to see that once the space dimension $N\ge 6$ , the qualified value of α no longer changes with the increase of N.
  • 关键词:35Q30 ; 35Q92 ; 92C17 ; 35K55 ; 35B65
国家哲学社会科学文献中心版权所有