摘要:Residency programs select medical students for interviews and employment using metrics such as the United States Medical Licensing Examination (USMLE) scores, grade-point average (GPA), and class rank/quartile. It is unclear whether these metrics predict performance as an intern. This study tested the hypothesis that performance on these metrics would predict intern performance. This single institution, retrospective cohort analysis included 244 graduates from four classes (2015–2018) who completed an Accreditation Council for Graduate Medical Education (ACGME) certified internship and were evaluated by program directors (PDs) at the end of the year. PDs provided a global assessment rating and ratings addressing ACGME competencies (response rate = 47%) with five response options: excellent = 5, very good = 4, acceptable = 3, marginal = 2, unacceptable = 1. PDs also classified interns as outstanding = 4, above average = 3, average = 2, and below average = 1 relative to other interns from the same residency program. Mean USMLE scores (Step 1 and Step 2CK), third-year GPA, class rank, and core competency ratings were compared using Welch’s ANOVA and follow-up pairwise t-tests. Better performance on PD evaluations at the end of intern year was associated with higher USMLE Step 1 (p = 0.006), Step 2CK (p = 0.030), medical school GPA (p = 0.020) and class rank (p = 0.016). Interns rated as average had lower USMLE scores, GPA, and class rank than those rated as above average or outstanding; there were no significant differences between above average and outstanding interns. Higher rating in each of the ACGME core competencies was associated with better intern performance (p < 0.01). Better performance as an intern was associated with higher USMLE scores, medical school GPA and class rank. When USMLE Step 1 reporting changes from numeric scores to pass/fail, residency programs can use other metrics to select medical students for interviews and employment.
其他摘要:Abstract Background Residency programs select medical students for interviews and employment using metrics such as the United States Medical Licensing Examination (USMLE) scores, grade-point average (GPA), and class rank/quartile. It is unclear whether these metrics predict performance as an intern. This study tested the hypothesis that performance on these metrics would predict intern performance. Methods This single institution, retrospective cohort analysis included 244 graduates from four classes (2015–2018) who completed an Accreditation Council for Graduate Medical Education (ACGME) certified internship and were evaluated by program directors (PDs) at the end of the year. PDs provided a global assessment rating and ratings addressing ACGME competencies (response rate = 47%) with five response options: excellent = 5, very good = 4, acceptable = 3, marginal = 2, unacceptable = 1. PDs also classified interns as outstanding = 4, above average = 3, average = 2, and below average = 1 relative to other interns from the same residency program. Mean USMLE scores (Step 1 and Step 2CK), third-year GPA, class rank, and core competency ratings were compared using Welch’s ANOVA and follow-up pairwise t-tests. Results Better performance on PD evaluations at the end of intern year was associated with higher USMLE Step 1 ( p = 0.006), Step 2CK ( p = 0.030), medical school GPA ( p = 0.020) and class rank ( p = 0.016). Interns rated as average had lower USMLE scores, GPA, and class rank than those rated as above average or outstanding; there were no significant differences between above average and outstanding interns. Higher rating in each of the ACGME core competencies was associated with better intern performance ( p < 0.01). Conclusions Better performance as an intern was associated with higher USMLE scores, medical school GPA and class rank. When USMLE Step 1 reporting changes from numeric scores to pass/fail, residency programs can use other metrics to select medical students for interviews and employment.