摘要:Panicle branching trait of rice is one of the key factors in detemining grain yield. This study was aimed to elucidate the genetic inheritance pattern of the tertiary rice panicle branches trait. Six rice populations i.e F 1 , F 1 R, F 2 , F 2 R, BC1P1, and BC1P2 generation including parental lines were generated as materials. The experiment was conducted at IPB University, Bogor, Indonesia from April 2017 to February 2019. Several parameters of genetic inheritance was observed. The result revealed that the inheritance of the tertiary panicle branching was controlled by many genes with the high broad-sense heritability and the moderate narrow-sense ones. Based on the scaling test, it was observed that additive dominant model did not fit to the number of tertiary branches and the number of grains of tertiary panicle branches. These phenomenons suspected may due probably to the effect of epistasis. In the advanced analysis employed by using the joint scaling test revealed that the gene action of the number of tertiary branches and number of grains on the tertiary branches were additive and additive×additive.
其他摘要:Panicle branching trait of rice is one of the key factors in detemining grain yield. This study was aimed to elucidate the genetic inheritance pattern of the tertiary rice panicle branches trait. Six rice populations i.e F 1 , F 1 R, F 2 , F 2 R, BC1P1, and BC1P2 generation including parental lines were generated as materials. The experiment was conducted at IPB University, Bogor, Indonesia from April 2017 to February 2019. Several parameters of genetic inheritance was observed. The result revealed that the inheritance of the tertiary panicle branching was controlled by many genes with the high broad-sense heritability and the moderate narrow-sense ones. Based on the scaling test, it was observed that additive dominant model did not fit to the number of tertiary branches and the number of grains of tertiary panicle branches. These phenomenons suspected may due probably to the effect of epistasis. In the advanced analysis employed by using the joint scaling test revealed that the gene action of the number of tertiary branches and number of grains on the tertiary branches were additive and additive×additive.