首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Analysis free surface of nonlinear seepage using the MQRBF method
  • 本地全文:下载
  • 作者:Yan SU ; Zhi-ming ZHENG ; Cheng-yu GU
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:233
  • 页码:3042
  • DOI:10.1051/e3sconf/202123303042
  • 出版社:EDP Sciences
  • 摘要:In order to solve the characteristics of low accuracy and slow efficiency in traditional numerical solution the free surface problem, the multiquardatic radial base function collocation method(MQ RBF) is used to analyze the constant seepage and unsteady seepage of the homogeneous earth dam. Computation of transient problem of free surface of earth dam by the linear derivation of Richards equation. The results show that the calculation accuracy of the MQRBF is higher than that of the traditional numerical method. The solution process does not involve numerical integral calculation and grid reorganization, which greatly reduces the calculation amount. Compared with the Trefftz method, it has the advantage of solving boundary values and internal values at the same time. It is not limited by the solution of the Laplace equation, and its application is wider and simpler.
  • 其他摘要:In order to solve the characteristics of low accuracy and slow efficiency in traditional numerical solution the free surface problem, the multiquardatic radial base function collocation method(MQ RBF) is used to analyze the constant seepage and unsteady seepage of the homogeneous earth dam. Computation of transient problem of free surface of earth dam by the linear derivation of Richards equation. The results show that the calculation accuracy of the MQRBF is higher than that of the traditional numerical method. The solution process does not involve numerical integral calculation and grid reorganization, which greatly reduces the calculation amount. Compared with the Trefftz method, it has the advantage of solving boundary values and internal values at the same time. It is not limited by the solution of the Laplace equation, and its application is wider and simpler.
国家哲学社会科学文献中心版权所有