首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Decomposition of xylene in strong ionization non-thermal plasma at atmospheric pressure
  • 本地全文:下载
  • 作者:Yuan Jia ; Chengwu Yi ; Rongjie Yi
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:233
  • 页码:1033
  • DOI:10.1051/e3sconf/202123301033
  • 出版社:EDP Sciences
  • 摘要:A large amount of volatile organic compounds (VOCs) produced by industry have caused serious environmental pollution. In this paper, the removal effect of simulated xylene by strong ionization dielectric barrier discharge (DBD) plasma at atmospheric pressure and its degradation mechanism and pathway were studied. The effect of gas residence time, and initial xylene concentration was studied. The results showed that higher voltage caused an increase in discharge power, and with the increase of voltage, the concentration of ozone and nitrogen oxide in the reactor increased. The degradation efficiency decreased from 98.1% to 80.2% when xylene concentration increased from 50 ppm to 550 ppm at 4kV. And with the increase of residence time from 0.301s to 1s, the degradation efficiency increased from 78.5% to 98.6%. According to GC-MS analysis, the degradation products were ethyl acetate and n-hexylmethylamine at 4kv. And the main intermediates are 2,4-2-tert-butylphenol, 2-aminopentane, 2-methyl-5 - (2-aminopropyl) - phenol and propionamide at 1.5kV.
  • 其他摘要:A large amount of volatile organic compounds (VOCs) produced by industry have caused serious environmental pollution. In this paper, the removal effect of simulated xylene by strong ionization dielectric barrier discharge (DBD) plasma at atmospheric pressure and its degradation mechanism and pathway were studied. The effect of gas residence time, and initial xylene concentration was studied. The results showed that higher voltage caused an increase in discharge power, and with the increase of voltage, the concentration of ozone and nitrogen oxide in the reactor increased. The degradation efficiency decreased from 98.1% to 80.2% when xylene concentration increased from 50 ppm to 550 ppm at 4kV. And with the increase of residence time from 0.301s to 1s, the degradation efficiency increased from 78.5% to 98.6%. According to GC-MS analysis, the degradation products were ethyl acetate and n-hexylmethylamine at 4kv. And the main intermediates are 2,4-2-tert-butylphenol, 2-aminopentane, 2-methyl-5 - (2-aminopropyl) - phenol and propionamide at 1.5kV.
国家哲学社会科学文献中心版权所有