摘要:Atmospheric aerosol is an important factor that affects solar irradiance. In this study, we examined the total atmospheric optical depth, aerosol optical depth AOD and the vertical particle size distribution in East Asia in terms of aerosol type during three years. The temporal variation of the aerosol optical depth for each site showed a constant mode renewed each year, the large AOD 0,5 are recorded in spring and summer in an almost periodic manner, with maximums around 0.95 in Seoul, 0.08 in Chiang Mai and 1.34 in EPA-NCU. The particle size distributions under a bimodal lognormal form present a remarkable increase in volume concentration of fine and coarse modes during spring. The aerosols reduce solar irradiance by 37.33 ± 0.78% in Chiang Mai, 33.48 ± 6.43% in EPA-NCU and 38.59 ± 3.86% in Seoul.
其他摘要:Atmospheric aerosol is an important factor that affects solar irradiance. In this study, we examined the total atmospheric optical depth, aerosol optical depth AOD and the vertical particle size distribution in East Asia in terms of aerosol type during three years. The temporal variation of the aerosol optical depth for each site showed a constant mode renewed each year, the large AOD 0,5 are recorded in spring and summer in an almost periodic manner, with maximums around 0.95 in Seoul, 0.08 in Chiang Mai and 1.34 in EPA-NCU. The particle size distributions under a bimodal lognormal form present a remarkable increase in volume concentration of fine and coarse modes during spring. The aerosols reduce solar irradiance by 37.33 ± 0.78% in Chiang Mai, 33.48 ± 6.43% in EPA-NCU and 38.59 ± 3.86% in Seoul.