首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Multibody System Discrete Time Transfer Matrix Method for Nonlinear Shear Dynamic analysis of Immersed Tunnels
  • 本地全文:下载
  • 作者:Zhongyuan Shen ; Xue Bai
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:236
  • 页码:2035
  • DOI:10.1051/e3sconf/202123602035
  • 出版社:EDP Sciences
  • 摘要:Shear seismic response analysis is critical for seismic design of immersed tunnels. According to the structural characters of immersed tunnels and shear dynamic response of their joints, a multibody dynamic model consisting of multi-rigid body, shear hinge, and viscous damping hinge is proposed for shear response analysis, in which the dynamic stiffness of the shear hinge is divided into two stages based on a threshold. Following the discrete time transfer matrix method for multibody system dynamics (MS-DT-TMM), the mechanical model and mathematical expression of each tunnel element is derived first and then assembled for the whole tunnel system. A solution procedure is proposed to solve the shear dynamic response of immersed tunnels using the proposed multibody system model. It is shown that the MS-DT-TMM has the same computational accuracy as the finite element method (FEM) and the modeling process is more efficient and flexible when compared to FEM. Although the MS-DT-TMM discussed herein is only applied to shear response analysis, it can easily be extended to analyze axial force and bending moment of immersed tunnels leading to a complete, rapid yet accurate enough seismic analysis of immersed tunnels suitable for engineering practices.
  • 其他摘要:Shear seismic response analysis is critical for seismic design of immersed tunnels. According to the structural characters of immersed tunnels and shear dynamic response of their joints, a multibody dynamic model consisting of multi-rigid body, shear hinge, and viscous damping hinge is proposed for shear response analysis, in which the dynamic stiffness of the shear hinge is divided into two stages based on a threshold. Following the discrete time transfer matrix method for multibody system dynamics (MS-DT-TMM), the mechanical model and mathematical expression of each tunnel element is derived first and then assembled for the whole tunnel system. A solution procedure is proposed to solve the shear dynamic response of immersed tunnels using the proposed multibody system model. It is shown that the MS-DT-TMM has the same computational accuracy as the finite element method (FEM) and the modeling process is more efficient and flexible when compared to FEM. Although the MS-DT-TMM discussed herein is only applied to shear response analysis, it can easily be extended to analyze axial force and bending moment of immersed tunnels leading to a complete, rapid yet accurate enough seismic analysis of immersed tunnels suitable for engineering practices.
国家哲学社会科学文献中心版权所有