摘要:Microstructure evolution of low alloy wear resistant steels during heat treatment procedure was studied in this paper. The results showed that During furnace cooling in homogenizing, Chromium/iron, Niobium, Vanadium and other hardly soluble carbides formed. But Chromium/iron carbides could resolve into austenite during quenching procedure, while the other carbides barely changed. Carbon addition grew the carbides into shuttle shapes and inflated the austenite grains. But Ni addition broadened the martensite lath width without dilating the austenite grains. And it hardly influenced the carbides formation. Vanadium addition seemed that the martensite lathes were cut into several discontinues sections. With the temperature rising, the boundaries got blurred, which might correlated with the decomposing of retained austenite.
其他摘要:Microstructure evolution of low alloy wear resistant steels during heat treatment procedure was studied in this paper. The results showed that During furnace cooling in homogenizing, Chromium/iron, Niobium, Vanadium and other hardly soluble carbides formed. But Chromium/iron carbides could resolve into austenite during quenching procedure, while the other carbides barely changed. Carbon addition grew the carbides into shuttle shapes and inflated the austenite grains. But Ni addition broadened the martensite lath width without dilating the austenite grains. And it hardly influenced the carbides formation. Vanadium addition seemed that the martensite lathes were cut into several discontinues sections. With the temperature rising, the boundaries got blurred, which might correlated with the decomposing of retained austenite.