首页    期刊浏览 2024年07月01日 星期一
登录注册

文章基本信息

  • 标题:Numerical Simulation on the Heat Dissipation of the Outdoor Unit in the Groove of High-Rise Building
  • 本地全文:下载
  • 作者:Yuan Wang ; Xiaoqing Zhou ; Ju Tian
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2021
  • 卷号:237
  • 页码:3024
  • DOI:10.1051/e3sconf/202123703024
  • 出版社:EDP Sciences
  • 摘要:In order to study the influence of the heat dissipation of the outdoor unit in the groove of the highrise building. Numerical simulation of the thermal environment of a high-rise building is carried out. The results show that: When the outdoor mean wind speed is 2.7m/s, the maximum inlet air temperature of the outdoor unit under full load condition is about 43.3 °C, which is 2 °C lower than that under no wind condition. The monsoon is beneficial to the heat dissipation of the outdoor unit. When the hot air in the building groove rises, the corner flow is induced at the lower side of the refuge layer. Due to the reverse pressure gradient, the flow separation occurs, resulting in the blockage in the flow channel. When the air flows through the refuge layer, the flow expands suddenly due to the increase of the cross-section of the channel. The turbulent boundary layer is separated. The vortex region is induced on the upper side of the refuge layer. Since the heat on the upper and lower sides of the refuge floor cannot be effectively dissipated, the inlet air temperature of the outdoor unit is higher than that of other floors, which reduces the working efficiency of the outdoor unit.
  • 其他摘要:In order to study the influence of the heat dissipation of the outdoor unit in the groove of the highrise building. Numerical simulation of the thermal environment of a high-rise building is carried out. The results show that: When the outdoor mean wind speed is 2.7m/s, the maximum inlet air temperature of the outdoor unit under full load condition is about 43.3 °C, which is 2 °C lower than that under no wind condition. The monsoon is beneficial to the heat dissipation of the outdoor unit. When the hot air in the building groove rises, the corner flow is induced at the lower side of the refuge layer. Due to the reverse pressure gradient, the flow separation occurs, resulting in the blockage in the flow channel. When the air flows through the refuge layer, the flow expands suddenly due to the increase of the cross-section of the channel. The turbulent boundary layer is separated. The vortex region is induced on the upper side of the refuge layer. Since the heat on the upper and lower sides of the refuge floor cannot be effectively dissipated, the inlet air temperature of the outdoor unit is higher than that of other floors, which reduces the working efficiency of the outdoor unit.
国家哲学社会科学文献中心版权所有