首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Automatic Impervious Surface Area Detection Using Image Texture Analysis and Neural Computing Models with Advanced Optimizers
  • 本地全文:下载
  • 作者:Nhat-Duc Hoang
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-17
  • DOI:10.1155/2021/8820116
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Up-to-date information regarding impervious surface is valuable for urban planning and management. The objective of this study is to develop neural computing models used for automatic impervious surface area detection at a regional scale. To achieve this task, advanced optimizers of adaptive moment estimation (Adam), a variation of Adam called Adamax, Nesterov-accelerated adaptive moment estimation (Nadam), Adam with decoupled weight decay (AdamW), and a new exponential moving average variant (AMSGrad) are used to train the artificial neural network models employed for impervious surface detection. These advanced optimizers are benchmarked with the conventional gradient descent with momentum (GDM). Remotely sensed images collected from Sentinel-2 satellite for the study area of Da Nang city (Vietnam) are used to construct and verify the proposed approach. Moreover, texture descriptors including statistical measurements of color channels and binary gradient contour are employed to extract useful features for the neural computing model-based pattern recognition. Experimental result supported by statistical test points out that the Nadam optimizer-based neural computing model has achieved the most desired predictive accuracy for the data collected in the studied region with classification accuracy rate of 97.331%, precision = 0.961, recall = 0.984, negative predictive value = 0.985, and F1 score = 0.972. Therefore, the model developed in this study can be a helpful tool for decision-makers in the task of urban land-use planning and management.
国家哲学社会科学文献中心版权所有