首页    期刊浏览 2025年06月29日 星期日
登录注册

文章基本信息

  • 标题:Toward a Fuzzy-based Approach for Computational Load Offloading of IoT Devices
  • 本地全文:下载
  • 作者:Lelio Campanile ; Mauro Iacono ; Fiammetta Marulli
  • 期刊名称:Journal of Universal Computer Science
  • 印刷版ISSN:0948-6968
  • 出版年度:2020
  • 卷号:26
  • 期号:11
  • 页码:1455-1474
  • 出版社:Graz University of Technology and Know-Center
  • 摘要:Technological development and market expansion offer an increased availability of resources and computing power on IoT nodes at affordable cost. The edge computing paradigm allows keeping locally on the edge of the network a part of computing, while keeping all advantages of the cloud and adding support for privacy, real-time and network resilience. This can be further improved in IoT applications by exibly harvesting resources on IoT nodes, by moving part of the computing tasks related to data from the edge server to the nodes, raising the abstraction level of the data aspects of the architecture and potentially enabling larger IoT networks to be efficiently deployed and managed, in a stand-alone logic or as a component of edge architecture. Anyway, an e_cient energy management mechanism is needed for battery powered IoT networks, the most exible implementations, that dynamically balances task allocation and execution in order to In this paper we present a fuzzy logic based power management strategy for IoT subsystem that aims at maximizing the duration of the network by locally migrating part of the computing tasks between nodes. As our goal is to enable the deployment of semi-autonomic large IoT networks, our proposal does not rely on external resources for migration control and operates on a local basis to ensure scalability: at the best of our knowledge, this differentiates our proposal with respect to similar solutions available in literature.
  • 关键词:IoT;IoT scalability;WSN;edge computing;energy management;fuzzy logic
国家哲学社会科学文献中心版权所有