首页    期刊浏览 2024年12月04日 星期三
登录注册

文章基本信息

  • 标题:Deep Learning for Fake News Detection in a Pairwise Textual Input Schema
  • 本地全文:下载
  • 作者:Despoina Mouratidis ; Maria Nefeli Nikiforos ; Katia Lida Kermanidis
  • 期刊名称:Computation
  • 电子版ISSN:2079-3197
  • 出版年度:2021
  • 卷号:9
  • 期号:2
  • 页码:20
  • DOI:10.3390/computation9020020
  • 出版社:MDPI Publishing
  • 摘要:In the past decade, the rapid spread of large volumes of online information among an increasing number of social network users is observed. It is a phenomenon that has often been exploited by malicious users and entities, which forge, distribute, and reproduce fake news and propaganda. In this paper, we present a novel approach to the automatic detection of fake news on Twitter that involves (a) pairwise text input, (b) a novel deep neural network learning architecture that allows for flexible input fusion at various network layers, and (c) various input modes, like word embeddings and both linguistic and network account features. Furthermore, tweets are innovatively separated into news headers and news text, and an extensive experimental setup performs classification tests using both. Our main results show high overall accuracy performance in fake news detection. The proposed deep learning architecture outperforms the state-of-the-art classifiers, while using fewer features and embeddings from the tweet text.
  • 关键词:fake news detection; deception detection; machine learning; natural language processing; deep learning; social media; pairwise input fake news detection ; deception detection ; machine learning ; natural language processing ; deep learning ; social media ; pairwise input
国家哲学社会科学文献中心版权所有