首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Preharvest Application of Chitosan Improves the Postharvest Life of ‘Garmrok’ Kiwifruit through the Modulation of Genes Related to Ethylene Biosynthesis, Cell Wall Modification, and Lignin Metabolism
  • 本地全文:下载
  • 作者:H. M. Prathibhani C. Kumarihami ; Jin Gook Kim ; Yun-Hee Kim
  • 期刊名称:Foods
  • 电子版ISSN:2304-8158
  • 出版年度:2021
  • 卷号:10
  • 期号:2
  • 页码:373
  • DOI:10.3390/foods10020373
  • 出版社:MDPI Publishing
  • 摘要:The influence of the preharvest application of chitosan on physicochemical properties and changes in gene expression of ‘Garmrok’ kiwifruit during postharvest cold storage (0 °C; RH 90–95%; 90 days) was investigated. Preharvest treatment of chitosan increased the fruit weight but had no significant effect on fruit size. The chitosan treatment suppressed the ethylene production and respiration rate of kiwifruit during the cold storage. The reduction of ethylene production of chitosan-treated kiwifruit was accompanied with the suppressed expression of ethylene biosynthesis genes. Moreover, preharvest application of chitosan diminished weight loss and delayed the changes in physicochemical properties that include firmness, soluble solids content, titratable acidity, total sugars, total acids, total phenols, and total lignin. As a result, the preharvest application of chitosan delayed the maturation and ripening of fruit. Expression of genes related to cell wall modification was down-regulated during the early maturation (ripening) period, while those related to gene expression for lignin metabolism were up-regulated at the later stages of ripening. These results demonstrate that the preharvest application of chitosan maintained the fruit quality and extends the postharvest life of ‘Garmrok’ kiwifruit, possibly through the modulation of genes related to ethylene biosynthesis, cell wall modification, and lignin metabolism.
  • 关键词:cell wall modification; chitosan; ethylene biosynthesis; fruit quality; lignin metabolism; postharvest quality; preharvest treatment cell wall modification ; chitosan ; ethylene biosynthesis ; fruit quality ; lignin metabolism ; postharvest quality ; preharvest treatment
国家哲学社会科学文献中心版权所有