首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Cyasterone accelerates fracture healing by promoting MSCs migration and osteogenesis
  • 本地全文:下载
  • 作者:Junlang Zhu ; Yamei Liu ; Chen Chen
  • 期刊名称:Journal of Orthopaedic Translation
  • 印刷版ISSN:2214-031X
  • 出版年度:2021
  • 卷号:28
  • 页码:28-38
  • DOI:10.1016/j.jot.2020.11.004
  • 出版社:Elsevier B.V.
  • 摘要:Background Mesenchymal Stem Cells (MSCs) therapy has become a new coming focus of clinical research in regenerative medicine. However, only a small number of implanted MSCs could successfully reach the injured areas. The previous studies have shown that fracture healing time is inversely proportional to concentration of MSCs in injured tissue. Methods The migration and osteogenesis of MSCs were assessed by transwell assay and Alizarin Red S staining. Levels of gene and protein expression were checked by qPCR and Western Blot. On the other hand, the enhanced migration ability of MSCs induced by Cyasterone was retarded by CXCR4 siRNA. In addition, the rat model of femoral fracture was established to evaluate the effect of Cyasterone on fracture healing. What's more, we also checked the effect of Cyasterone on mobilisation of MSCs in vivo. Results The results showed that Cyasteron increased the number of MSCs in peripheral blood. The concentrations of SDF-1α in serum at different time points were determined by ELISA assay. Micro-CT and histological analysis were used to evaluate the fractured femurs.Our results showed that Cyasterone could promote the migration and osteogenesis capacities of MSCs. The fractured femurs healed faster with treatment of Cyasterone. Meanwhile, Cyasterone could significantly increase the level of SDF-1α in rats with femur fracture. Conclusion Cyasterone could promote migration and osteogenesis of MSCs, and most importantly, it could accelerate bone fracture healing. Translational Potential statement: These findings provide evidence that Cyasterone could be used as a therapeutic reagent for MSCs mobilisation and osteogenesis. What's more, it could acclerate fracture healing.
  • 关键词:Cyasterone ; Osteogenesis ; SDF-1α ; Fracture ; MSCs
国家哲学社会科学文献中心版权所有