首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:A Survey on the Explainability of Supervised Machine Learning
  • 本地全文:下载
  • 作者:Nadia Burkart ; Marco F. Huber
  • 期刊名称:Journal of Artificial Intelligence Research
  • 印刷版ISSN:1076-9757
  • 出版年度:2021
  • 卷号:70
  • 页码:245-317
  • 出版社:American Association of Artificial
  • 摘要:Predictions obtained by; e.g.; artificial neural networks have a high accuracy but humans often perceive the models as black boxes. Insights about the decision making are mostly opaque for humans. Particularly understanding the decision making in highly sensitive areas such as healthcare or finance; is of paramount importance. The decision-making behind the black boxes requires it to be more transparent; accountable; and understandable for humans. This survey paper provides essential definitions; an overview of the different principles and methodologies of explainable Supervised Machine Learning (SML). We conduct a state-of-the-art survey that reviews past and recent explainable SML approaches and classifies them according to the introduced definitions. Finally; we illustrate principles by means of an explanatory case study and discuss important future directions.
  • 关键词:machine learning;knowledge discovery;neural networks;rule learning
国家哲学社会科学文献中心版权所有