首页    期刊浏览 2024年11月13日 星期三
登录注册

文章基本信息

  • 标题:Empirical determination of optimal configuration for characteristics of a multilayer perceptron neural network in nonlinear regression
  • 本地全文:下载
  • 作者:Castro Gbemˆ emali Hounmenou ; Romeo J ´ esukp ´ ego Tohoun ; Kossi Essona Gneyou
  • 期刊名称:Afrika Statistika
  • 印刷版ISSN:0825-0305
  • 出版年度:2020
  • 卷号:15
  • 期号:3
  • 页码:2413-2429
  • DOI:10.16929/as/2020.2413.166
  • 出版社:African Journals Online
  • 摘要:In this paper, we determine an optimal configuration for characteristics of a multilayer perceptron neural network (MPL) in nonlinear regression for predicting crop yield. Monte Carlo simulation approach has been used to train several databases generated by varying the internal structure of 3-MLP from simple to complex for 5 different algorithms most commonly used. Results showed that the optimal configuration is obtained with the Levenberg Marquard algorithm, 75% of the number of input variables as number of hidden nodes, learning rate 40%, minimum sample size 150, tangent hyperbolic and exponential functions in the hidden and output layers respectively. This configuration has been illustrated with real life data.
  • 关键词:artificial neural network;machine learning;sample-size effect;nonlinear models;prediction
国家哲学社会科学文献中心版权所有