首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Spoofing Linear Cross-Entropy Benchmarking in Shallow Quantum Circuits
  • 本地全文:下载
  • 作者:Boaz Barak ; Chi-Ning Chou ; Xun Gao
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:185
  • 页码:30:1-30:20
  • DOI:10.4230/LIPIcs.ITCS.2021.30
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The linear cross-entropy benchmark (Linear XEB) has been used as a test for procedures simulating quantum circuits. Given a quantum circuit C with n inputs and outputs and purported simulator whose output is distributed according to a distribution p over {0,1}ⁿ, the linear XEB fidelity of the simulator is â"±_C(p) = 2ⁿ ð"¼_{x â^¼ p} q_C(x) -1, where q_C(x) is the probability that x is output from the distribution C 0ⁿâY©. A trivial simulator (e.g., the uniform distribution) satisfies â"±_C(p) = 0, while Google’s noisy quantum simulation of a 53-qubit circuit C achieved a fidelity value of (2.24 ±0.21)Ã-10^{-3} (Arute et. al., Nature'19). In this work we give a classical randomized algorithm that for a given circuit C of depth d with Haar random 2-qubit gates achieves in expectation a fidelity value of Ω(n/Lâ<.15^{-d}) in running time poly(n,2^L). Here L is the size of the light cone of C: the maximum number of input bits that each output bit depends on. In particular, we obtain a polynomial-time algorithm that achieves large fidelity of ω(1) for depth O(â^S{log n}) two-dimensional circuits. This is the first such result for two dimensional circuits of super-constant depth. Our results can be considered as an evidence that fooling the linear XEB test might be easier than achieving a full simulation of the quantum circuit.
  • 关键词:Quantum supremacy; Linear cross-entropy benchmark
国家哲学社会科学文献中心版权所有