首页    期刊浏览 2024年12月18日 星期三
登录注册

文章基本信息

  • 标题:Training (Overparametrized) Neural Networks in Near-Linear Time
  • 本地全文:下载
  • 作者:Jan van den Brand ; Binghui Peng ; Zhao Song
  • 期刊名称:LIPIcs : Leibniz International Proceedings in Informatics
  • 电子版ISSN:1868-8969
  • 出版年度:2021
  • 卷号:185
  • 页码:63:1-63:15
  • DOI:10.4230/LIPIcs.ITCS.2021.63
  • 出版社:Schloss Dagstuhl -- Leibniz-Zentrum fuer Informatik
  • 摘要:The slow convergence rate and pathological curvature issues of first-order gradient methods for training deep neural networks, initiated an ongoing effort for developing faster second-order optimization algorithms beyond SGD, without compromising the generalization error. Despite their remarkable convergence rate (independent of the training batch size n), second-order algorithms incur a daunting slowdown in the cost per iteration (inverting the Hessian matrix of the loss function), which renders them impractical. Very recently, this computational overhead was mitigated by the works of [Zhang et al., 2019; Cai et al., 2019], yielding an O(mn²)-time second-order algorithm for training two-layer overparametrized neural networks of polynomial width m. We show how to speed up the algorithm of [Cai et al., 2019], achieving an OÌf(mn)-time backpropagation algorithm for training (mildly overparametrized) ReLU networks, which is near-linear in the dimension (mn) of the full gradient (Jacobian) matrix. The centerpiece of our algorithm is to reformulate the Gauss-Newton iteration as an ð"â,,-regression problem, and then use a Fast-JL type dimension reduction to precondition the underlying Gram matrix in time independent of M, allowing to find a sufficiently good approximate solution via first-order conjugate gradient. Our result provides a proof-of-concept that advanced machinery from randomized linear algebra - which led to recent breakthroughs in convex optimization (ERM, LPs, Regression) - can be carried over to the realm of deep learning as well.
  • 关键词:Deep learning theory; Nonconvex optimization
国家哲学社会科学文献中心版权所有