首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:On Explicit Branching Programs for the Rectangular Determinant and Permanent Polynomials
  • 本地全文:下载
  • 作者:V. Arvind ; Abhranil Chatterjee ; Rajit Datta
  • 期刊名称:Chicago Journal of Theoretical Computer Science
  • 印刷版ISSN:1073-0486
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-18
  • 出版社:MIT Press ; University of Chicago, Department of Computer Science
  • 摘要:We study the arithmetic circuit complexity of some well-known families of polynomials through the lens of parameterized complexity. Our main focus is on the construction of explicit algebraic branching programs (ABPs) for the determinant and the permanent polynomials of the rectangular symbolic matrix in both commutative and noncommutative settings. The main results are: • We show an explicit O ∗ ( n ↓k/2  )-size ABP construction for the noncommutative permanent polynomial of a k ×n symbolic matrix. We obtain this via an explicit ABP construction of size O ∗ ( n ↓k/2  ) for S ∗ n,k , the noncommutative symmetrized version of the elementary symmetric polynomial Sn,k. • We obtain an explicit O ∗ (2 k )-size ABP construction for the commutative rectangular determinant polynomial of the k ×n symbolic matrix. • In contrast, we show that evaluating the rectangular noncommutative determinant with rational matrix entries is #W[1]-hard.
  • 关键词:Rectangular Permanent;Rectangular Determinant
国家哲学社会科学文献中心版权所有