首页    期刊浏览 2025年06月21日 星期六
登录注册

文章基本信息

  • 标题:A Genetic Programming based Hyper-Heuristic for Production Scheduling in Apparel Industry
  • 本地全文:下载
  • 作者:Cecilia E. Nugraheni ; Luciana Abednego ; Maria Widyarini
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2020
  • 卷号:10
  • 期号:12
  • 页码:119-128
  • DOI:10.5121/csit.2020.101212
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:The apparel industry is a type of textile industry. One of scheduling problems found in the apparel industry production can be classified as Flow Shop Scheduling Problems (FSSP). GPHH for FSSP is a genetic programming based hyper-heuristic techniques to solve FSSP[1]. The algorithm basically aims to generate new heuristics from two basic (low-level) heuristics, namely Palmer Algorithm and Gupta Algorithm. This paper describes the implementation of the GPHH algorithm and the results of experiments conducted to determine the performance of the proposed algorithm. The experimental results show that the proposed algorithm is promising, has better performance than Palmer Algorithm and Gupta Algorithm.
  • 关键词:Hyper-heuristic ;Genetic Programming ;Palmer Algorithm ;Gupta Algorithm ;Flow Shop Scheduling Problem ;Apparel Industry.
国家哲学社会科学文献中心版权所有