首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Data Prediction of Deflection Basin Evolution of Asphalt Pavement Structure Based on Multi-Level Neural Network
  • 本地全文:下载
  • 作者:Shaosheng Xu ; Jinde Cao ; Xiangnan Liu
  • 期刊名称:Computer Science & Information Technology
  • 电子版ISSN:2231-5403
  • 出版年度:2020
  • 卷号:10
  • 期号:13
  • 页码:37-46
  • DOI:10.5121/csit.2020.101304
  • 出版社:Academy & Industry Research Collaboration Center (AIRCC)
  • 摘要:Aiming at reducing the high cost of test data collection of deflection basins in the structural design of asphalt pavement and shortening the long test time of new structures, this paper innovatively designs a structure coding network based on traditional neural networks to map the pavement structure to an abstract space. Therefore, the generalization ability of the neural network structure is improved, and a new multi-level neural network model is formed to predict the evolution data of the deflection basin of the untested structure. By testing the experimental data of RIOHTRACK, the network structure predicts the deflection basin data of untested pavement structure, of which the average prediction error is less than 5%.
  • 关键词:multi-level neural network ;Encoding converter ;structural of asphalt pavement ;deflection basins ;RIOHTRACK.
国家哲学社会科学文献中心版权所有