首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Dynamic out-of-vocabulary word registration to language model for speech recognition
  • 本地全文:下载
  • 作者:Norihide Kitaoka ; Bohan Chen ; Yuya Obashi
  • 期刊名称:EURASIP Journal on Audio, Speech, and Music Processing
  • 印刷版ISSN:1687-4714
  • 电子版ISSN:1687-4722
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13636-020-00193-1
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We propose a method of dynamically registering out-of-vocabulary (OOV) words by assigning the pronunciations of these words to pre-inserted OOV tokens, editing the pronunciations of the tokens. To do this, we add OOV tokens to an additional, partial copy of our corpus, either randomly or to part-of-speech (POS) tags in the selected utterances, when training the language model (LM) for speech recognition. This results in an LM containing OOV tokens, to which we can assign pronunciations. We also investigate the impact of acoustic complexity and the “natural” occurrence frequency of OOV words on the recognition of registered OOV words. The proposed OOV word registration method is evaluated using two modern automatic speech recognition (ASR) systems, Julius and Kaldi, using DNN-HMM acoustic models and N-gram language models (plus an additional evaluation using RNN re-scoring with Kaldi). Our experimental results show that when using the proposed OOV registration method, modern ASR systems can recognize OOV words without re-training the language model, that the acoustic complexity of OOV words affects OOV recognition, and that differences between the “natural” and the assigned occurrence frequencies of OOV words have little impact on the final recognition results.
  • 关键词:Speech recognition ; Out-of-vocabulary words ; OOV registration ; Language model
国家哲学社会科学文献中心版权所有