首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Analysis of reaction–diffusion systems where a parameter influences both the reaction terms as well as the boundary
  • 本地全文:下载
  • 作者:A. Acharya ; N. Fonseka ; R. Shivaji
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13661-021-01490-0
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We study positive solutions to steady-state reaction–diffusion models of the form $$ \textstyle\begin{cases} -\Delta u=\lambda f(v);\quad\Omega, \\ -\Delta v=\lambda g(u);\quad\Omega, \\ \frac{\partial u}{\partial \eta } \sqrt{\lambda } u=0;\quad \partial \Omega, \\ \frac{\partial v}{\partial \eta } \sqrt{\lambda }v=0; \quad\partial \Omega, \end{cases} $$ where $\lambda >0$ is a positive parameter, Ω is a bounded domain in $\mathbb{R}^{N}$ $(N > 1)$ with smooth boundary ∂Ω, or $\Omega =(0,1)$ , $\frac{\partial z}{\partial \eta }$ is the outward normal derivative of z. We assume that f and g are continuous increasing functions such that $f(0) = 0 = g(0)$ and $\lim_{s \rightarrow \infty } \frac{f(Mg(s))}{s} = 0$ for all $M>0$ . In particular, we extend the results for the single equation case discussed in (Fonseka et al. in J. Math. Anal. Appl. 476(2):480-494, 2019) to the above system.
  • 关键词:35J15 ; 35J25 ; 35J60
国家哲学社会科学文献中心版权所有