首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Crop-specific phenomapping by fusing Landsat and Sentinel data with MODIS time series
  • 本地全文:下载
  • 作者:Jonas Schreier ; Gohar Ghazaryan ; Olena Dubovyk
  • 期刊名称:European Journal of Remote Sensing
  • 电子版ISSN:2279-7254
  • 出版年度:2021
  • 卷号:54
  • 期号:sup1
  • 页码:47-58
  • DOI:10.1080/22797254.2020.1831969
  • 摘要:Agricultural production and food security highly depend on crop growth and condition throughout the growing season. Timely and spatially explicit information on crop phenology can assist in informed decision making and agricultural land management. Remote sensing can be a powerful tool for agricultural assessment. Remotely sensed data is ideally suited for both large-scale and field-level analyses due to the wide variability of datasets with diverse spatiotemporal resolution. To derive crop-specific phenometrics, we fused time series from Landsat 8 and Sentinel 2 with Moderate-resolution Imaging Spectroradiometer (MODIS) data. Using a linear regression approach, synthetic Landsat 8 and Sentinel 2 data were created based on MODIS imagery. This fusion-process resulted in synthetic imagery with radiometric characteristics of original Landsat 8 and Sentinel 2 data. We created four different time series using synthetic data as well as a mix of original and synthetic data. The extracted time series of phenometrics consisting of both synthetic and original data showed high detail in the final phenomaps which allowed intra-field level assessment of crops. In-situ field reports were used for validation. Our phenometrics showed only a few days of deviation for most crops and datasets. The proposed data integration method can be applied in areas where data from a single high-resolution source is scarce.
  • 关键词:Data-fusion ; phenometrics ; high-resolution ; crops
国家哲学社会科学文献中心版权所有