首页    期刊浏览 2025年07月24日 星期四
登录注册

文章基本信息

  • 标题:Ground state solutions for Kirchhoff-type equations with general nonlinearity in low dimension
  • 本地全文:下载
  • 作者:Jing Chen ; Yiqing Li
  • 期刊名称:Boundary Value Problems
  • 印刷版ISSN:1687-2762
  • 电子版ISSN:1687-2770
  • 出版年度:2021
  • 卷号:2021
  • 期号:1
  • 页码:1
  • DOI:10.1186/s13661-021-01503-y
  • 出版社:Hindawi Publishing Corporation
  • 摘要:This paper is dedicated to studying the following Kirchhoff-type problem: $$ \textstyle\begin{cases} -m ( \Vert \nabla u \Vert ^{2}_{L^{2}(\mathbb{R} ^{N})} )\Delta u V(x)u=f(u), & x\in \mathbb{R} ^{N}; \\ u\in H^{1}(\mathbb{R} ^{N}), \end{cases} $$ where $N=1,2$ , $m:[0,\infty )\rightarrow (0,\infty )$ is a continuous function, $V:\mathbb{R} ^{N}\rightarrow \mathbb{R} $ is differentiable, and $f\in \mathcal{C}(\mathbb{R} ,\mathbb{R} )$ . We obtain the existence of a ground state solution of Nehari–Pohozaev type and the least energy solution under some assumptions on V, m, and f. Especially, the existence of nonlocal term $m(\ \nabla u\ ^{2}_{L^{2}(\mathbb{R} ^{N})})$ and the lack of Hardy’s inequality and Sobolev’s inequality in low dimension make the problem more complicated. To overcome the above-mentioned difficulties, some new energy inequalities and subtle analyses are introduced.
  • 关键词:35J20 ; 35J60
国家哲学社会科学文献中心版权所有