首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:A Simple Benchmark Problem for the Numerical Methods of the Cahn–Hilliard Equation
  • 本地全文:下载
  • 作者:Yibao Li ; Chaeyoung Lee ; Jian Wang
  • 期刊名称:Discrete Dynamics in Nature and Society
  • 印刷版ISSN:1026-0226
  • 电子版ISSN:1607-887X
  • 出版年度:2021
  • 卷号:2021
  • 页码:1-8
  • DOI:10.1155/2021/8889603
  • 出版社:Hindawi Publishing Corporation
  • 摘要:We present a very simple benchmark problem for the numerical methods of the Cahn–Hilliard (CH) equation. For the benchmark problem, we consider a cosine function as the initial condition. The periodic sinusoidal profile satisfies both the homogeneous and periodic boundary conditions. The strength of the proposed problem is that it is simpler than the previous works. For the benchmark numerical solution of the CH equation, we use a fourth-order Runge–Kutta method (RK4) for the temporal integration and a centered finite difference scheme for the spatial differential operator. Using the proposed benchmark problem solution, we perform the convergence tests for an unconditionally gradient stable scheme via linear convex splitting proposed by Eyre and the Crank–Nicolson scheme. We obtain the expected convergence rates in time for the numerical schemes for the one-, two-, and three-dimensional CH equations.
国家哲学社会科学文献中心版权所有