期刊名称:Electronic Colloquium on Computational Complexity
印刷版ISSN:1433-8092
出版年度:2020
卷号:2020
页码:1-32
出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
摘要:We present the first explicit construction of a non-malleable code that can handle tampering functions that are bounded-degree polynomials. Prior to our work, this was only known for degree-1 polynomials (affine tampering functions), due to Chattopadhyay and Li (STOC 2017). As a direct corollary, we obtain an explicit non-malleable code that is secure against tampering by bounded-size arithmetic circuits. We show applications of our non-malleable code in constructing non-malleable secret sharing schemes that are robust against bounded-degree polynomial tampering. In fact our result is stronger: we can handle adversaries that can adaptively choose the polynomial tampering function based on initial leakage of a bounded number of shares. Our results are derived from explicit constructions of seedless non-malleable extractors that can handle bounded-degree polynomial tampering functions. Prior to our work, no such result was known even for degree-2 (quadratic) polynomials.