首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Geometric Rank of Tensors and Subrank of Matrix Multiplication
  • 本地全文:下载
  • 作者:Swastik Kopparty ; Guy Moshkovitz ; Jeroen Zuiddam
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-22
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Motivated by problems in algebraic complexity theory (e.g., matrix multiplication) and extremal combinatorics (e.g., the cap set problem and the sunflower problem), we introduce the geometric rank as a new tool in the study of tensors and hypergraphs. We prove that the geometric rank is an upper bound on the subrank of tensors and the independence number of hypergraphs. We prove that the geometric rank is smaller than the slice rank of Tao, and relate geometric rank to the analytic rank of Gowers and Wolf in an asymptotic fashion. As a first application, we use geometric rank to prove a tight upper bound on the (border) subrank of the matrix multiplication tensors, matching Strassen’s well-known lower bound from 1987.
国家哲学社会科学文献中心版权所有