首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Barriers for Rectangular Matrix Multiplication
  • 本地全文:下载
  • 作者:Matthias Christandl ; François Le Gall ; Vladimir Lysikov
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-21
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:We study the algorithmic problem of multiplying large matrices that are rectangular. We prove that the method that has been used to construct the fastest algorithms for rectangular matrix multiplication cannot give optimal algorithms. In fact, we prove a precise numerical barrier for this method. Our barrier improves the previously known barriers, both in the numerical sense, as well as in its generality. We prove our result using the asymptotic spectrum of tensors. More precisely, we crucially make use of two families of real tensor parameters with special algebraic properties: the quantum functionals and the support functionals. In particular, we prove that any lower bound on the dual exponent of matrix multiplication α via the big Coppersmith–Winograd tensors cannot exceed 0.625.
国家哲学社会科学文献中心版权所有