首页    期刊浏览 2024年12月05日 星期四
登录注册

文章基本信息

  • 标题:Polynomial Data Structure Lower Bounds in the Group Model
  • 本地全文:下载
  • 作者:Alexander Golovnev ; Gleb Posobin ; Oded Regev
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-25
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Proving super-logarithmic data structure lower bounds in the static group model has been a fundamental challenge in computational geometry since the early 80’s. We prove a polynomial (n Ω(1)) lower bound for an explicit range counting problem of n 3 convex polygons in R 2 (each with n O˜(1) facets/semialgebraiccomplexity), against linear storage arithmetic data structures in the group model. Our construction and analysis are based on a combination of techniques in Diophantine approximation, pseudorandomness, and compressed sensing—in particular, on the existence and partial derandomization of optimal binary compressed sensing matrices in the polynomial sparsity regime (k = n 1−δ ). As a byproduct, this establishes a (logarithmic) separation between compressed sensing matrices and the stronger RIP property.
国家哲学社会科学文献中心版权所有