首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Monotone Circuit Lower Bounds from Robust Sunflowers
  • 本地全文:下载
  • 作者:Bruno Pasqualotto Cavalar ; Mrinal Kumar ; Benjamin Rossman
  • 期刊名称:Electronic Colloquium on Computational Complexity
  • 印刷版ISSN:1433-8092
  • 出版年度:2020
  • 卷号:2020
  • 页码:1-19
  • 出版社:Universität Trier, Lehrstuhl für Theoretische Computer-Forschung
  • 摘要:Robust sunflowers are a generalization of combinatorial sunflowers that have applications in monotone circuit complexity [21], DNF sparsification [9], randomness extractors [14], and recent advances on the Erd˝os-Rado sunflower conjecture [3,15,18]. The recent breakthrough of Alweiss, Lovett, Wu and Zhang [3] gives an improved bound on the maximum size of a w-set system that excludes a robust sunflower. In this paper, we use this result to obtain an exp(n 1/2−o(1)) lower bound on the monotone circuit size of an explicit n-variate monotone function, improving the previous best known exp(n 1/3−o(1)) due to Andreev [5] and Harnik and Raz [10]. We also show an exp(Ω(n)) lower bound on the monotone arithmetic circuit size of a related polynomial. Finally, we introduce a notion of robust clique-sunflowers and use this to prove an n Ω(k) lower bound on the monotone circuit size of the CLIQUE function for all k 6 n 1/3−o(1), strengthening the bound of Alon and Boppana [1].
国家哲学社会科学文献中心版权所有