首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Construction of competitive endogenous RNA network reveals regulatory role of long non-coding RNAs in intracranial aneurysm
  • 本地全文:下载
  • 作者:Yuan-Bo Pan ; Jianan Lu ; Biao Yang
  • 期刊名称:BMC Neuroscience
  • 印刷版ISSN:1471-2202
  • 电子版ISSN:1471-2202
  • 出版年度:2021
  • 卷号:22
  • 期号:1
  • 页码:1-14
  • DOI:10.1186/s12868-021-00622-7
  • 出版社:BioMed Central
  • 摘要:Rupture of intracranial aneurysm (IA) is the main cause of devastating subarachnoid hemorrhage, which urges our understanding of the pathogenesis and regulatory mechanisms of IA. However, the regulatory roles of long non-coding RNAs (lncRNAs) in IA is less known. We processed the raw SRR files of 12 superficial temporal artery (STA) samples and 6 IA samples to count files. Then the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs between STAs and IAs were identified. The enrichment analyses were performed using DEmRNAs. Next, a lncRNA-miRNA-mRNA regulatory network was constructed using integrated bioinformatics analysis. In summary, 341 DElncRNAs, 234 DEmiRNAs, and 2914 DEmRNAs between the STA and IA. The lncRNA-miRNA-mRNA regulatory network of IA contains 91 nodes and 146 edges. The subnetwork of hub lncRNA PVT1 was extracted. The expression level of PVT1 was positively correlated with a majority of the mRNAs in its subnetwork. Moreover, we found that several mRNAs (CCND1, HIF1A, E2F1, CDKN1A, VEGFA, COL1A1 and COL5A2) in the PVT1 subnetwork served as essential components in the PI3K-Akt signaling pathway, and that some of the non-coding RNAs (ncRNAs) (PVT1, HOTAIR, hsa-miR-17, hsa-miR-142, hsa-miR-383 and hsa-miR-193b) interacted with these mRNAs. Our annotations noting ncRNA’s role in the pathway may uncover novel regulatory mechanisms of ncRNAs and mRNAs in IA. These findings provide significant insights into the lncRNA regulatory network in IA.
  • 其他摘要:Abstract Background Rupture of intracranial aneurysm (IA) is the main cause of devastating subarachnoid hemorrhage, which urges our understanding of the pathogenesis and regulatory mechanisms of IA. However, the regulatory roles of long non-coding RNAs (lncRNAs) in IA is less known. Results We processed the raw SRR files of 12 superficial temporal artery (STA) samples and 6 IA samples to count files. Then the differentially expressed (DE) mRNAs, miRNAs, and lncRNAs between STAs and IAs were identified. The enrichment analyses were performed using DEmRNAs. Next, a lncRNA-miRNA-mRNA regulatory network was constructed using integrated bioinformatics analysis. In summary, 341 DElncRNAs, 234 DEmiRNAs, and 2914 DEmRNAs between the STA and IA. The lncRNA-miRNA-mRNA regulatory network of IA contains 91 nodes and 146 edges. The subnetwork of hub lncRNA PVT1 was extracted. The expression level of PVT1 was positively correlated with a majority of the mRNAs in its subnetwork. Moreover, we found that several mRNAs (CCND1, HIF1A, E2F1, CDKN1A, VEGFA, COL1A1 and COL5A2) in the PVT1 subnetwork served as essential components in the PI3K-Akt signaling pathway, and that some of the non-coding RNAs (ncRNAs) (PVT1, HOTAIR, hsa-miR-17, hsa-miR-142, hsa-miR-383 and hsa-miR-193b) interacted with these mRNAs. Conclusion Our annotations noting ncRNA’s role in the pathway may uncover novel regulatory mechanisms of ncRNAs and mRNAs in IA. These findings provide significant insights into the lncRNA regulatory network in IA.
  • 关键词:Bioinformatics analysis ; Intracranial aneurysm ; Competitive endogenous RNA ; Long non-coding RNA ; PI3K-Akt signaling pathway ; PVT1 ; HOTAIR
国家哲学社会科学文献中心版权所有