首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Provenance metadata for statistical data: An introduction to Structured Data Transformation Language (SDTL)
  • 本地全文:下载
  • 作者:George Alter ; Darrell Donakowski ; Jack Gager
  • 期刊名称:IASSIST Quarterly
  • 印刷版ISSN:0739-1137
  • 出版年度:2020
  • 卷号:44
  • 期号:4
  • 页码:1-26
  • DOI:10.29173/iq983
  • 出版社:International Association for Social Science Information Service & Technology
  • 摘要:Structured Data Transformation Language (SDTL) provides structured, machine actionable representations of data transformation commands found in statistical analysis software.   The Continuous Capture of Metadata for Statistical Data Project (C2Metadata) created SDTL as part of an automated system that captures provenance metadata from data transformation scripts and adds variable derivations to standard metadata files.  SDTL also has potential for auditing scripts and for translating scripts between languages.  SDTL is expressed in a set of JSON schemas, which are machine actionable and easily serialized to other formats.  Statistical software languages have a number of special features that have been carried into SDTL.  We explain how SDTL handles differences among statistical languages and complex operations, such as merging files and reshaping data tables from “wide” to “long”.
  • 关键词:Metadata;provenance;statistical data
国家哲学社会科学文献中心版权所有