摘要:Although metabolic syndrome (MS) is a significant risk of cardiovascular disease (CVD), the cardiac response (MR) to MS remains unclear due to traditional MS models’ narrow scope around a limited number of cell-cycle regulation biomarkers and drawbacks of limited human tissue samples. To date, we developed the most comprehensive platform studying MR to MS in a pig model tightly related to human MS criteria. By incorporating comparative metabolomic, transcriptomic, functional analyses, and unsupervised machine learning (UML), we can discover unknown metabolic pathways connections and links on numerous biomarkers across the MS-associated issues in the heart. For the first time, we show severely diminished availability of glycolytic and citric acid cycle (CAC) pathways metabolites, altered expression, GlcNAcylation, and activity of involved enzymes. A notable exception, however, is the excessive succinate accumulation despite reduced succinate dehydrogenase complex iron-sulfur subunit b (SDHB) expression and decreased content of precursor metabolites. Finally, the expression of metabolites and enzymes from the GABA-glutamate, GABA-putrescine, and the glyoxylate pathways significantly increase, suggesting an alternative cardiac means to replenish succinate and malate in MS. Our platform discovers potential therapeutic targets for MS-associated CVD within pathways that were previously unknown to corelate with the disease.