摘要:Blood carries oxygen and nutrients to the trillions of cells in our body to sustain vital life processes. Lack of blood perfusion can cause irreversible cell damage. Therefore, blood perfusion measurement has widespread clinical applications. In this paper, we develop PulseCam — a new camera-based, motion-robust, and highly sensitive blood perfusion imaging modality with 1 mm spatial resolution and 1 frame-per-second temporal resolution. Existing camera-only blood perfusion imaging modality suffers from two core challenges: (i) motion artifact, and (ii) small signal recovery in the presence of large surface reflection and measurement noise. PulseCam addresses these challenges by robustly combining the video recording from the camera with a pulse waveform measured using a conventional pulse oximeter to obtain reliable blood perfusion maps in the presence of motion artifacts and outliers in the video recordings. For video stabilization, we adopt a novel brightness-invariant optical flow algorithm that helps us reduce error in blood perfusion estimate below 10% in different motion scenarios compared to 20–30% error when using current approaches. PulseCam can detect subtle changes in blood perfusion below the skin with at least two times better sensitivity, three times better response time, and is significantly cheaper compared to infrared thermography. PulseCam can also detect venous or partial blood flow occlusion that is difficult to identify using existing modalities such as the perfusion index measured using a pulse oximeter. With the help of a pilot clinical study, we also demonstrate that PulseCam is robust and reliable in an operationally challenging surgery room setting. We anticipate that PulseCam will be used both at the bedside as well as a point-of-care blood perfusion imaging device to visualize and analyze blood perfusion in an easy-to-use and cost-effective manner.