首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Stochastic Resonance in Insulator-Metal-Transition Systems
  • 本地全文:下载
  • 作者:Bitan Bhar ; Abhishek Khanna ; Abhinav Parihar
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-62537-3
  • 出版社:Springer Nature
  • 摘要:Stochastic resonance (SR) is an ingenious phenomenon observed in nature and in biological systems but has seen very few practical applications in engineering. It has been observed and analyzed in widely different natural phenomenon including in bio-organisms (e.g. Mechanoreceptor of crayfish) and in environmental sciences (e.g. the periodic occurrence of ice ages). The main idea behind SR seems quite unorthodox – it proposes that noise, that is intrinsically present in a system or is extrinsically added, can help enhance the signal power at the output, in a desired frequency range. Despite its promise and ubiquitous presence in nature, SR has not been successively harnessed in engineering applications. In this work, we demonstrate both experimentally as well as theoretically how the intrinsic threshold noise of an insulator-metal-transition (IMT) material can enable SR. We borrow inspiration from natural systems which use SR to detect and amplify low-amplitude signals, to demonstrate how a simple electrical circuit which uses an IMT device can exploit SR in engineering applications. We explore two such applications: one of them utilizes noise to correctly transmit signals corresponding to different vowel sounds akin to auditory nerves, without amplifying the amplitude of the input audio sound. This finds applications in cochlear implants where ultra-low power consumption is a primary requirement. The second application leverages the frequency response of SR, where the loss of resonance at out-of-band frequencies is used. We demonstrate how to provide frequency selectivity by tuning an extrinsically added noise to the system.
国家哲学社会科学文献中心版权所有