首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Primary productivity connects hilsa fishery in the Bay of Bengal
  • 本地全文:下载
  • 作者:M. Shahadat Hossain ; Subrata Sarker ; S. M. Sharifuzzaman
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-16
  • DOI:10.1038/s41598-020-62616-5
  • 出版社:Springer Nature
  • 摘要:Tropical hilsa shad (Tenualosa ilisha) contributes significantly to the society and economy of Bangladesh, India and Myanmar, but little is known about their habitats across the life cycle and their relationship with environmental drivers. This study describes spatial and temporal variability of productivity in the Bay of Bengal (BoB) relating to hilsa fishery. Decadal data on net primary productivity, nutrients (i.e. nitrate, phosphate and silicate) and zooplankton were collected from Aqua MODIS, world ocean database and COPEPOD respectively with spatial resolution 1°×1°. Moreover, monthly abundance of phytoplankton, hilsa catch and long-term catch dynamics were analyzed to determine the associations between variables. The present study was extended over 3.568 million km2 area, of which 0.131–0.213 million km2 area characterized as the most productive with net primary production of >2,000 mg C/m2/day, 0.373–0.861 million km2 area as moderately productive with 500–2,000 mg C/m2/day, and 2.517–3.040 million km2 area as the least productive with <500 mg C/m2/day which were consistent with field verification data. In case of nutrients, the Ganges-Brahmaputra-Meghna (GBM) delta was rich in nitrate and phosphate than that of the Ayeyarwady delta, while silicate concentration persisted high all over the northern BoB including the deltas. A peak abundance of phytoplankton was observed in GBM delta during the months of August-November, when ~80% of total hilsa are harvested in Bangladesh annually. Variations in seasonal productivity linked with nutrients and phytoplankton abundance are important factors for predicting hilsa habitat and their migration patterns in the deltaic regions and shelf waters of BoB. These results can be useful in forecasting potential responses of the hilsa in BoB ecosystem to changing global ocean productivity.
国家哲学社会科学文献中心版权所有