首页    期刊浏览 2025年02月21日 星期五
登录注册

文章基本信息

  • 标题:A Novel Mechanism for Nitrosative Stress Tolerance Dependent on GTP Cyclohydrolase II Activity Involved in Riboflavin Synthesis of Yeast
  • 本地全文:下载
  • 作者:Khairul Anam ; Ryo Nasuno ; Hiroshi Takagi
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-62890-3
  • 出版社:Springer Nature
  • 摘要:The biological functions of nitric oxide (NO) depend on its concentration, and excessive levels of NO induce various harmful situations known as nitrosative stress. Therefore, organisms possess many kinds of strategies to regulate the intracellular NO concentration and/or to detoxify excess NO. Here, we used genetic screening to identify a novel nitrosative stress tolerance gene, RIB1, encoding GTP cyclohydrolase II (GTPCH2), which catalyzes the first step in riboflavin biosynthesis. Our further analyses demonstrated that the GTPCH2 enzymatic activity of Rib1 is essential for RIB1-dependent nitrosative stress tolerance, but that riboflavin itself is not required for this tolerance. Furthermore, the reaction mixture of a recombinant purified Rib1 was shown to quench NO or its derivatives, even though formate or pyrophosphate, which are byproducts of the Rib1 reaction, did not, suggesting that the reaction product of Rib1, 2,5-diamino-6-(5-phospo-d-ribosylamino)-pyrimidin-4(3 H)-one (DARP), scavenges NO or its derivatives. Finally, it was revealed that 2,4,5-triamino-1H-pyrimidin-6-one, which is identical to a pyrimidine moiety of DARP, scavenged NO or its derivatives, suggesting that DARP reacts with N2O3 generated via its pyrimidine moiety.
国家哲学社会科学文献中心版权所有