首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Comparative lipidomics of 5-Fluorouracil–sensitive and –resistant colorectal cancer cells reveals altered sphingomyelin and ceramide controlled by acid sphingomyelinase (SMPD1)
  • 本地全文:下载
  • 作者:Jae Hun Jung ; Kohei Taniguchi ; Hyeong Min Lee
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-12
  • DOI:10.1038/s41598-020-62823-0
  • 出版社:Springer Nature
  • 摘要:5-Fluorouracil (5-FU) is a chemotherapeutic drug widely used to treat colorectal cancer. 5-FU is known to gradually lose its efficacy in treating colorectal cancer following the acquisition of resistance. We investigated the mechanism of 5-FU resistance using comprehensive lipidomic approaches. We performed lipidomic analysis on 5-FU–resistant (DLD-1/5-FU) and -sensitive (DLD-1) colorectal cancer cells using MALDI-MS and LC-MRM-MS. In particular, sphingomyelin (SM) species were significantly up-regulated in 5-FU–resistant cells in MALDI-TOF analysis. Further, we quantified sphingolipids including SM and Ceramide (Cer) using Multiple Reaction Monitoring (MRM), as they play a vital role in drug resistance. We found that 5-FU resistance in DLD-1/5-FU colorectal cancer cells was mainly associated with SM increase and Cer decrease, which are controlled by acid sphingomyelinase (SMPD1). In addition, reduction of SMPD1 expression was confirmed by LC-MRM-MS analysis and the effect of SMPD1 in drug resistance was assessed by treating DLD-1 cells with siRNA-SMPD1. Furthermore, clinical colorectal cancer data set analysis showed that down-regulation of SMPD1 was associated with resistance to chemotherapy regimens that include 5-FU. Thus, from our study, we propose that SM/Cer and SMPD1 are new potential target molecules for therapeutic strategies to overcome 5-FU resistance.
国家哲学社会科学文献中心版权所有