首页    期刊浏览 2024年10月04日 星期五
登录注册

文章基本信息

  • 标题:Effect of short-term high-temperatures on the growth, development and reproduction in the fruit fly, Bactrocera tau (Diptera: Tephritidae)
  • 本地全文:下载
  • 作者:Yuyu Huang ; Xiangpeng Gu ; Xiaoqin Peng
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-10
  • DOI:10.1038/s41598-020-63502-w
  • 出版社:Springer Nature
  • 摘要:Bactrocera tau (Walker) (Diptera: Tephritidae) is an economically important invasive pest, that is capable of seriously reducing the quality and yield of vegetables and fruits, it was first recorded from Fujian province in 1849 and later introduced to Yunnan province in 1912 as a result in trade fruits and vegetables of China. In recent years, with the onset of global climate change and the accompanying increase in the greenhouse effect, elevated climatic temperatures have become one of the main environmental factors affecting growth and reproduction in insects, and the optimal developmental temperature of B. tau was found to be from 25 °C to 31 °C, the growth, development and reproduction of B. tau are normal under the optimal temperature conditions. In order to determine the repercussions that elevated temperature have on B. tau, we assessed the effects that short-term (12 h) high-temperature exposures (34 °C, 36 °C, 38 °C, 40 °C, 42 °C, 44 °C, 46 °C, and 48 °C) had on the growth, development and reproduction of B. tau at different developmental stages of the fly. The results showed that the survival rate of B. tau gradually decreased in all stages following exposure to short-term high-temperatures. The pupal stage was the least sensitive to increased temperatures. The pupae withstood the highest lethal temperature, having an LT50 of 42.060 °C, followed by female adults (40.447 °C), male adults (40.013 °C), and larvae (36.740 °C). The egg stage, which was the most susceptible to heat increases, had the lowest LT50 (38.310 °C). No significant effects were observed in the developmental stages of B. tau at temperatures from 24 °C to 38 °C. The development duration was significantly prolonged at 40 °C (P < 0.05) in the eggs (2.830d), larvae (7.330d), and pupae (8.170d) (P < 0.05). B. tau was unable to survive at temperatures above 42 °C. The pre-oviposition of female adults was extended, the average egg number per female showed a downward trend, the longevity of adults gradually shortened, and the ratio of female to male offspring increased as temperature increments were increased. In summary, short-term high-temperatures over 42 °C were not suitable for successful development of B. tau, while short-term high-temperatures over 40 °C were not suitable for successful reproduction in B. tau.
国家哲学社会科学文献中心版权所有