摘要:To design novel conjugated polymers and improve interfacial interaction with semiconductor is one of directions to develop high-efficient photocatalysts with harvesting photons and boosting catalytic activities. Herein, two novel linear conjugated polymers poly[(thiophene-ethylene-thiophene)-thiophene] (PTET-T) and poly[(thiophene-ethylene-thiophene)-thiophene-3-carboxylic acid] (PTET-T-COOH) were successfully synthesized by a simple Stille coupling reaction. Their heterojunction with TiO2, i.e, PTET-T/TiO2 (C1) and PTET-T-COOH/TiO2 (C2), exhibited outstanding photocatalytic activity for degrading Rhodamine B, methylene blue and tetracycline. The energetic “lock-in effect” between PTET-T-COOH and TiO2 through carboxyl groups and hydroxyl groups interaction has been proved to greatly improve the interface charge transfer ability and suppress the electron-hole recombination in PTET-T-COOH/TiO2. Thus, by regulating the dosage of polymers, the 15% PTET-T-COOH/TiO2 showed the optimized photocatalytic activity with excellent chemical stability, and its kinetic rate constant was determined to be 41.7 times of that of TiO2. This work provided a new effective strategy of designed and explored organic semiconductor-inorganic heterojunction photocatalysts with broaden absorption, repeatability and high-charge mobility.