首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Graphene Oxide Papers in Nanogenerators for Self-Powered Humidity Sensing by Finger Tapping
  • 本地全文:下载
  • 作者:Faezeh Ejehi ; Raheleh Mohammadpour ; Elham Asadian
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-11
  • DOI:10.1038/s41598-020-64490-7
  • 出版社:Springer Nature
  • 摘要:Triboelectric nanogenerators (TENGs) offer an emerging market of self-sufficient power sources, converting the mechanical energy of the environment to electricity. Recently reported high power densities for the TENGs provide new applications opportunities, such as self-powered sensors. Here in this research, a flexible graphene oxide (GO) paper was fabricated through a straightforward method and utilized as the electrode of TENGs. Outstanding power density as high as 1.3 W.m−2, an open-circuit voltage up to 870 V, and a current density of 1.4 µA.cm−2 has been extracted in vertical contact-separation mode. The all-flexible TENG has been employed as a self-powered humidity sensor to investigate the effect of raising humidity on the output voltage and current by applying mechanical agitation in two forms of using a tapping device and finger tapping. Due to the presence of superficial functional groups on the GO paper, water molecules are inclined to be adsorbed, resulting in a considerable reduction in both generated voltage (from 144 V to 14 V) and current (from 23 µA to 3.7 µA) within the range of relative humidity of 20% to 99%. These results provide a promising applicability of the first suggested sensitive self-powered GO TENG humidity sensor in portable/wearable electronics.
国家哲学社会科学文献中心版权所有