首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Feasibility between Bifidobacteria Targeting and Changes in the Acoustic Environment of tumor Tissue for Synergistic HIFU
  • 本地全文:下载
  • 作者:Die Xu ; Wenjuan Zou ; Yong Luo
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2020
  • 卷号:10
  • 期号:1
  • 页码:1-9
  • DOI:10.1038/s41598-020-64661-6
  • 出版社:Springer Nature
  • 摘要:High intensity focused ultrasound (HIFU) has been recently shown as a rapidly developing new technique for non-invasive ablation of local tumors whose therapeutic efficiency can be significantly improved by changing the tissue acoustic environment (AET). Currently, the method of changing AET is mainly to introduce a medium with high acoustic impedance, but there are some disadvantages such as low retention of the introduced medium in the target area and a short residence time during the process. In our strategy, anaerobic bacterium Bifidobacterium longum (B. longum) which can colonize selectively in hypoxic regions of the animal body was successfully localized and shown to proliferate in the hypoxic zone of tumor tissue, overcoming the above disadvantages. This study aimed to explore the effects of Bifidobacteria on AET (including the structure and acoustic properties of tumor tissues) and HIFU ablation at different time. The results show that the injection of Bifidobacteria increased the collagen fibre number, elastic modulus and sound velocity and decreased neovascularization in tumor tissues. The number of collagen fibres and neovascularization decreased significantly over time. Under the same HIFU irradiation intensity, the B. longum injection increased the coagulative necrosis volume and decreased the energy efficiency factor (EEF). This study confirmed that Bifidobacteria can change the AET and increase the deposition of ultrasonic energy and thereby the efficiency of HIFU. In addition, the time that Bifidobacteria stay in the tumor area after injection is an important factor. This research provides a novel approach for synergistic biologically targeted HIFU therapy.
国家哲学社会科学文献中心版权所有